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Abstract 

A new algorithm for the solution of crystal structures 
via the principle of minimum cross entropy is 
described. This method is an extension of direct 
methods. Conventional direct methods are used to 
find an initial set of phases which are extended and 
refined by a search for the minimum-cross-entropy 
solution. This search is done directly in terms of the 
phases rather than the Lagrange multipliers used in 
most other approaches. It was tested by solving two 
structures, a small molecule and a macromolecule of 
610 atoms in the asymmetric unit. 

Introduction 

The maximum entropy method has stimulated much 
interest in the expansion of direct methods to phase 
determination for macromolecules. This paper details 
the use of the cross entropy to solve two structures. 
One of these structures is a small molecule, thiolysine, 
which is readily solved by conventional direct 
methods. The other structure is a 15-base oligomer 
of deoxyribonucleic acid (DNA), which would be 
difficult to solve by conventional direct methods as 
there are 610 atoms in the asymmetric unit and the 
crystals diffract only to about 3 A resolution. 

Density modification techniques, including the 
maximum entropy method, are often treated in isola- 
tion from the rest of the process of structure determi- 
nation. A comparison with direct methods is useful. 
Direct methods are more complicated than just the 
use of the tangent rule to refine phases. The choice 
of the origin-determining reflections, the expansion 
of these with or without extra symbols to form a 
starting set, and the use of appropriate statistics to 
monitor the convergence of the process are all 
examples of issues which must be properly addressed 
for direct methods to find a solution. Neglect of the 
geometric and statistical framework on which density 
modification and direct methods are implicitly based 
is a recipe for failure, while with appropriate statis- 
tical treatment even a very crude and approximate 
density modification scheme may work. 
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When entropy is used to find a solution to a crystal 
structure similar issues must be addressed. The pro- 
cess is started in the same way as direct methods; an 
origin set of reflections is chosen and expanded with 
Sayre's equation. This approximate solution is then 
refined with an entropy-based algorithm to produce 
a more interpretable structure. Maximum entropy is 
used for the same purpose as the tangent rule in direct 
methods. 

Here, entropy is defined similarly, and is given a 
similar treatment to its use in other entropy-based 
approaches (Collins, 1982; Wilkins, Varghese & 
Lehmann, 1983; Bryan, Bansal, Folkhard, Nave & 
Marvin, 1983; Marvin, Bryan & Nave, 1987; Bricogne, 
1984; Wilkins & Stuart, 1986). However, the algorithm 
for finding this solution is different from the other 
approaches. The terminology is somewhat different. 
The cross entropy used here is simply the negative 
of the relative entropy (Hobson & Cheng, 1973; Shore 
& Johnson, 1980, 1981). While this may initially cause 
some confusion, referring to the minimization of cross 
entropy rather than the maximization of relative 
entropy better reflects the underlying mathematics. 

Entropy and cross entropy 

Entropy (H)  is defined as the expected value of the 
information (Shannon, 1948; Yu, 1976). The informa- 
tion is defined as the negative logarithm of the proba- 
bility distribution. 

H=I  dVp(-ln p) (1) 

where p is the electron density and d V is the differen- 
tial element of volume. The cross or relative entropy 
is defined as the expected value of the difference in 
the information between some initial estimate and 
the current estimate: 

Hc = J d Vp[ln (p/prior)  ] ( 1 a) 

where prior is the initial or prior estimate for p. 
Positivity is implicit in these definitions, but both the 
logarithm and its expected value can be extended to 
treat negative density values. When the prior is chosen 
to have a constant value, these equations are 
equivalent (Hobson & Cheng, 1973). In the absence 
of further knowledge the maximum entropy distribu- 
tion is fiat. Typically this would correspond to all of 
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the knowledge available from the F(000). This would 
be the least informative prior that could be chosen. 
In a Bayesian sense this is the most reliable in that 
the fewest unwarranted assumptions about p are 
made. More strictly, it can be shown from a limited 
set of axioms about statistical consistency and unique- 
ness that cross entropy forms the most general rule 
for inference (Shore & Johnson, I980). 

Constraints v s  coordinates 

Traditionally additional knowledge not included in 
a prior is introduced in the form of constraints 
(Jaynes, 1957, 1968; Frieden, 1972, 1981; Gull & 
Daniell, 1978; Bricogne, 1984; Bryan & Skilling, 1986; 
Navaza, 1986; Shore & Johnson, 1980, 1981). The 
ability to use constraints was one of the original 
reasons for the choice of entropy as an information 
measure (Jaynes, 1957). The algebraic form of the 
constraints could affect the nature of the results. If 
the results depend on some property of the algebraic 
form of the constraints, and the form of the con- 
straints is an arbitrary choice, then the advantages of 
maximum entropy as a method of inference are lost. 
Rather than choose any specific form of the con- 
straints, we shall use a differentiable function, X, 
which could represent any constraint. This results in 
a modified entropy H' ,  

H'=H+x. (2) 

The solution for p of the modified entropy can be 
accomplished by variational means. As long as p and 
h" are functions of the same variables this results in 
the differential equation 

dg - In p - 1 = 0 (3) 

o r  

p =exp ( -1  +dx) .  

dx can then be adjusted to find the density p that 
meets the constraints. 

This approach, referred to as exponential modeling 
(Bricogne, 1984; Collins & Mahar, 1983), is not the 
best algorithm for finding the solution. It does, 
however, provide the foundation for some useful 
results. In particular it allows a definition of the 
'natural' form of the constraint term X. Suppose pc is 
the correct solution. From (3) it is trivial to find dg 
such that p will equal pc. g is then ~ d Vpc In pc. A 
further term can be defined from this. The mutual 
information (M) is the sum of g and H: 

M=H'=~dV(pclnpc-plnp). (4) 

Since pc In Pc and p In p share the same functional 
form, this suggests that the problem of finding the 
constraints may be transformed from a variational 
problem into some other form. In particular, this 

suggests that the dual problem may be more tractable. 
A dual problem is an equivalent formulation of a 
problem where coordinates and constraints have been 
interchanged; for example, reformulation of circular 
motion in polar rather than rectangular coordinates. 
The only experimental data available in a standard 
crystallographic experiment are the magnitudes of 
the structure factors, [FI. There may, of course, be 
several sets of these values corresponding to different 
heavy-atom derivatives for isomorphous replacement. 
The constraints have been introduced primarily to 
reproduce these magnitudes. Therefore, a logical 
choice for a dual problem is to replace p by 
Y~h [Fh[ exp (ia) exp (2zrih.x) and only allow the 
phase a to vary. Each constraint for a reflection is 
replaced by a coordinate a. The minimizer for the 
cross entropy can then find the solution by searching 
these coordinates. 

A direct minimization of the cross entropy in terms 
of the free or independent variables of the system 
simplifies the problem of finding a maximum entropy 
and minimum cross entropy solution. By avoiding 
constraints, the convergence problems associated 
with finding them are also avoided. A dual problem 
where the constraints are replaced by coordinates is 
constructed. This is equivalent to examining many 
maps, all of which have correct [Fi's, to find the 
minimum-cross-entropy map, rather than examining 
many maps of which only some have correct [F['s. 
The advantage of this approach is that the minimizer 
is tuned to a specific problem such as determining 
values for unknown phases. This is also a disadvan- 
tage in that the algorithm may not be easy to transport 
to a general problem. 

Normalization 

Before detailing this algorithm, the problems 
associated with normalization must be defined. 
Normalization can be handled in two ways with con- 
straint-based algorithms. The simplest approach is to 
calculate the partition function, Jd Vp, and use this 
explicitly to normalize p (Jaynes, 1957, 1968; Berger, 
1985). The normalization may also be included as a 
constraint. A simple constraint of the form Y~ p is 
sufficient. 

A similar choice of approaches is available when 
the minimization is done directly as a function of the 
phases without constraints. First, a normalization 
constraint may be added to formulation, in which 
case there is implicit normalization. Following this 
path results in the minimization of the mutual infor- 
mation. The other approach is to normalize explicitly 
during the minimization; this is equivalent to the use 
of the partition function in the constrained mini- 
mization. The solutions to both approaches are 
equivalent, but there may be a difference in conver- 
gence. Explicit normalization was used in the solution 
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of the structures described here. It tends to be more 
convergent than implicit normalization. 

In general, normalization is not a problem with 
Fourier data. Parseval's theorem shows that when the 
magnitudes of the structure factors are correct, the 
density is properly scaled (Tolstov, 1976). In addition, 
the F(000) term must be included in the Fourier 
transform for positivity to be defined. As long as this 
term and the rest of the Fourier coefficients are finite, 
and the Fourier series is band limited, then the density 
is bounded and the normalization is automatically 
defined. 

A practical algorithm 

For a crystallographic problem the phase of the reflec- 
tion is varied to find the minimum-cross-entropy 
solution. This minimization is performed in a complex 
space and without simplification can be very difficult. 
The basic equations for the full-scale maximization 
of a related entropy, the Burg entropy, are derived 
by Narayan & Nityananda (1982), and are easy to 
generalize to any other form of the entropy. Unfortu- 
nately they are not easy to apply because the second 
derivative of the entropy with respect to two indepen- 
dent reflections is non-zero, which means that it is 
difficult to construct an entropy maximizer, as the 
matrix of second derivatives will be both large and 
densely populated. 

The general scheme is one of a modified Newton's 
method with projection (Scales, 1985). Starting from 
an initial set of structure factors, with phases chosen 
independently from this minimization, one can find 
an initial estimate for the electron density with a 
Fourier transform. In real space a shift towards the 
minimum cross entropy i~ taken, and, after another 
Fourier transform, the new values for the structure 
factors are used to update the phases. This scheme 
is outlined in Fig. 1. As the Fourier transform is a 
complete orthogonal sequence, figures of merit and 
combinations of IFol and ]Fc] may be used. Since 
algorithms for the calculation of the Fourier trans- 
form are well known, only the details of the shift in 
real space will be described. 

The real-space step in the minimization is done in 
the following manner. The first and second derivatives 
of the unconstrained cross entropy in real space are 
simply 

l + l n  (p/prior) and 1/p. 

A simple Newton-Raphson minimizer would then be 

p' = p - p[ln (p/prior) + 1]. 

Completely unconstrained, this would converge to a 
value of p = e -1 prior. This simple form is not quite 
stable enough to be practical. When p is larger than 
prior it will first send p to a value smaller than prior 
and then converge. A simple modification to the 

second derivative, 1/p, fixes this problem. When 1/p 
is small, it is replaced with a larger value. The constant 
8 in the modified second derivative was chosen as 
the smallest number for which stale convergence 
occurred in three-dimensional tests: 

p '=  p - {min [p, e-]prior + (p - e-]prior)/8]} 

x[ln (p/pr ior)+ 1]. (5) 

A similar form can be found for the mutual infor- 
mation, 

p' = p - {min [p, prior+ (p - prior)/8][ln (p/prior)]}, 

(5a) 

the only difference being that the mutual information 
will converge directly to p. For (5) the scale between 
p' and p will be e I. The difference between them is 
in the treatment of normalization. The iteration 
defined by (5) appears to be more convergent than 
that of (5a). In both of these equations the first 
derivative of the entropy with respect to the phase is 
used exactly, since by the chain rule for differentiation 
it is proportional to the Fourier transform of this 
term, but the second derivative is treated approxi- 
mately. When p is negative or zero then the solution 
for an approximate bound to the entropy, p = ]p[ + e 
(e is a small constant dependent on the computer 
representation of a floating-point number, approxi- 
mately 10 -7 for a 32-bit machine), is used first and 
the new value for p is refined with (5) or (5a). 

After performing this modification, the phases are 
calculated from the Fourier transform of p' and the 

Flowchart for Structure Solution 
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Fig. 1. The algorithm described in this paper is shown in this flow 
chart. The overall algorithm is described on the left, and the 
modified Newton's-method minimizer is shown in the expanded 
section. 
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phases of the reflections are set to the new values. 
Either this can be done in P1 or the space-group 
symmetry in reciprocal space may be preserved by 
only updating the asymmetric unit and then expand- 
ing that to the complete P1 set. It is useful to 
calculate figures of merit based on Fo and Ft. The 
figure of merit is a summary of the probability of 
Folexp(ia) given IFclexp(iacatc) found by 
do~ P(o,)lFol exp (ia).  Assuming a delta function at 

]Fclexp(io~¢a~c) as a prior distribution, maximum 
entropy can be used to find the posterior distribution 
for [Folexp(ia). The general maximum-entropy 
solution for the Burg entropy, ~ In p d V, in such a 
case is a polar expansion of the form 

Y. a2,,/llFol exp (ic~)-IF~l exp (ia~alc)l 2" 
n 

(Press, Flannery, Teukolsky & Vetterling, 1986). This 
distribution is not sensitive to the values for the con- 
stants a2,, and the values a2,, =(2n) [  are a good, 
although not normalized, approximation. The only 
adjustable parameter is then the scale between Fo and 
F~ which is a constant that depends only on the form 
of the iteration (the dependence on the average error 
between Fo and F~ would be in the numerator and 
would be lost in the normalization used when finding 
the figure of merit). 

The termination criteria that have been most useful 
with this iteration scheme are the crystallographic R 
factor and the root mean square phase shift. Conver- 
gence has occurred when the r.m.s, phase shift stays 
small for several consecutive cycles and the R factor 
is low. 

Reciprocal-space maximum entropy 

Real-space cross-entropy minimizers or entropy 
maximizers have a serious problem when starting 
from a small number of reflections such as the set 
which defines the crystallographic origin. When there 
is very little prior information, the map calculated 
from such a phase set is closer to the featureless global 
entropy maximum than the final solution. Under such. 
circumstances the derivatives used to find the new 
phases will be zero or nearly zero, and it is difficult 
to proceed as the phase shifts will be poorly condi- 
tioned and unreliable. One could give all the phases 
random values, but then the value of the origin and 
enantiomorph-determining phases would be lost. This 
would be equivalent to attempting to sort out an equal 
mixture of all of the origins and enantiomorphs, 
which is very difficult. What is necessary is a way to 
sort out those reflections whose phases are highly 
dependent on the limited origin set, and then to find 
phase values which are near to the entropy maximum. 

Since the Fourier transform of a logarithm is 
analytically untractable, it is necessary to expand the 
logarithm in a power series to find the entropy in 

terms of structure factors. Expanding p In p as a 
power series and integrating produces a series of 
bounds to the entropy, the simplest being equivalent 
to Sayre's equation (Harrison, 1987). These bounds 
can be directly evaluated in redprocal  space on a 
limited set of reflections. The lowest-order bound 
appears to be the most useful because the complexity 
of calculating these bounds is exponential with the 
number of terms in the bound (it is of polynomial 
complexity with the number of reflections). The 
higher-order bounds usually make better estimates 
for the phases, but seldom are the estimates worth 
the extra cost. These expansions can only be used a 
few times on a four-reflection origin set before the 
errors in the approximation accumulate to where the 
result is nearly random. 

The use of these polynomial bounds differs from 
the use of Sayre's equation in classical direct methods. 
In direct methods a subset of the reflections for which 
this relationship is 'most accurate' is chosen, and the 
phases of these are adjusted to find a solution (Ladd 
& Palmer, 1980). When used with entropy this 
relationship is simply ~ convenient short-cut to the 
solution and, with the possible exception of point- 
group dependence, no special weighting should be 
used. There is no probability associated with 
individual terms in the equation when used in an 
entropic sense. 

Polynomial expansion of the entropy also simplifies 
the treatment of negative values of p. Clearly the 
algorithm described above (5) for finding the 
maximum entropy is not defined when p is less than 
or equal to zero. This condition, however, is unavoid- 
able during the process of finding the maximum. Use 
of a polynomial bound in place of the entropy for 
small values of /9 defines the appropriate way to 
proceed when p is small or negative. With the simplest 
bound, p is replaced with its absolute value. 

Proof of concept 

The general approach for solving an unknown struc- 
ture can now be defined. First, as in direct methods, 
an origin and enantiomorph set of reflections is 
chosen. The same geometric constraints on primitivity 
and unique origin (for example, origin reflections 
must not be self-seminvariant) should be followed 
(Rogers, 1980). It is also useful to choose strong 
reflections, and the enantiomorph-defining reflection 
should interact strongly with the origin-determining 
set. An initial starting set of closely linked reflections 
is phased from this small set by the use of a poly- 
nomial bound to the entropy (Sayre's equation). 
Finally, this somewhat enlarged set of reflections is 
refined via a real-space entropy maximizer. During 
this process the space-group symmetry is maintained 
by updating the asymmetric unit and expanding that 
to the full P1 set. The solution of a partially known 
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structure would simply skip the first steps and use 
the partial structure to provide the initial phases. 

A small simple structure was solved in order to 
show that this approach could work. Thiolysine 
hydrochloride (S-aminoethylcysteine) crystal diffrac- 
tion data collected by Ammon & Gerlt (1987) were 
used. The X-ray data to 0.75 ,~ resolution were util- 
ized. There were 755 independent observations. The 
crystal belongs to the space group P2~ with a unit 
cell of a = 5.1275, b =7.9809, c=  11.2079 A and/3 = 
104.127 ° . This structure is readily solved by direct 
methods, but no coordinate or phase information 
from the known structure was used in this trial. The 
reflections 306, 214, 101 were chosen as the origin 
set, and the phase of the reflection 358 was set to 45 ° 
to fix the enantiomorph. Three cycles of Sayre's 
equation were used to expand this set to 593 phases. 
The structure was not visible in a map calculated 
from this phase set. After 23 cycles of cross-entropy 
minimization the structure was clearly visible. A 
model fit to the map refined to a 10% crystallographic 
R factor without the addition of H atoms or aniso- 
tropic thermal factors. 

This approach is not  restricted to small molecules 
at high resolution. Crystals of a 15-base pair oligomer 
of DNA with an inserted unpaired base were obtained 
as described by Miller, Wlodawer, Appella & Suss- 
man (1987). These crystals were from the orthorhom- 
bic space group I222 with a unit cell of a = 36.99, 
b = 53.7 and c = 101.6 A and diffract only to about 
3 A resolution. This structure could not be solved by 
multiple isomorphous replacement (MIR) methods 
because we failed in the attempt to prepare isomor- 
phous heavy-atom derivatives. This problem was also 
chosen because the DNA molecule has a regular 
structure which would be recognizable even in a noisy 
map. The data were collected at the National Bureau 
of Standards with a two-dimensional area detector 
with oscillation geometry (Howard, Gilliland, Finzel, 
Poulos, Ohlendorf & Shlemme, 1987). It was 
necessary to cool the crystals during the data collec- 
tion as they are very thermosensitive. The data from 
one crystal were used in the phasing. Approximately 
75% of the reflections were observed [I > 1.5o'(I)] 
at 3 ,~ resolution, but the missing data were in the 
form of a wedge rather than randomly distributed in 
reciprocal space. 

The reflections 031,303 and 510 were given phases 
of 0 to determine the origin, and the reflection 114 
was given a phase of 90 ° to set the enantiomorph. 
This set was expanded in three cycles of Sayre's 
equation resulting in phases for 1100 out of 1211 
reflections. A map was calculated at this stage and 
while it had encouraging features like large 'solvent' 
areas it was not interpretable in terms of a realistic 
molecular structure (Fig. 2). These 1100 reflections 
were refined for four cycles, and then the rest of the 
reflections were added. These were refined for 100 

cycles (which was more than required for conver- 
gence). The initial R factor was 0-367 and the r.m.s. 
phase shift was 40 ° . The final values were 0.121 and 
2.8 ° . The map calculated at this step clearly showed 
the location and orientation of the DNA molecule. 
Fig. 3 shows a 20 A section of this map, and Fig. 4 
shows the equivalent section ofa  2Fo - Fc map calcu- 
lated after refinement. Two copies of the molecule 
are visible. The molecule runs diagonally from the 
middle of the figure at the bottom of the map to the 
upper right corner. Part of the molecule is above the 

Fig. 2. The map calculated with the phases from the use of Sayre's 
equation is shown in this 20 A section. While it shows interesting 
features like large 'solvent' areas, it is not interpretable. 

Fig. 3. A 20 ,~ section of the minimum-cross-entropy map of the 
DNA. The sections are in the xy plane with the crystallographic 
origin at the middle of the left edge of the map. Two molecules 
are shown in this map. One molecule runs from the center of 
the lower edge of the map to the upper right corner, and the 
other is rotated about the twofold axis through the center of  the 
map. The molecules run between a pair of non-equivalent two- 
fold axes. The upper right-hand part of the map is somewhat 
'washed out'. Partially, this is caused by phase errors, but the 
molecule also runs out of the top of the map in this region. 
Phase errors are also evident in the density on the twofold axis 
in the center of  the map. 
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map  sections shown, which accounts for the partial  
washing out of  density in the upper  right corner. The 
density on the crystal lographic twofold axis in the 
center of  the minimum-cross-ent ropy map  (Fig. 3) 
shows the presence of  some error in the phases.  Based 
on inspection of  the diffraction pattern in a precession 
photograph,  it was expected that the helix axis would 
lie in the x y  plane of  the unit cell (Miller, Wlodawer ,  
Appel la  & Sussman,  1987). This indeed was the case. 
In addit ion,  the 3.3 A base-pai r  separat ion,  the loca- 
tion of  the major  and minor  grooves, and the helical 
pitch were clearly visible in this map.  The density 
was fit by manual ly  inserting a dodecamer  structure 
(Wing, Drew, Takano,  Broka, Tanaka,  I takura  & 
Dickerson,  1980) into the map and adjust ing it for 
the difference in the helix pitch. S tandard  molecular  
refinement techniques and refitting the map  with the 
correct sequence produced  a structure with a crys- 
ta l lographic R factor of  26 .3%,  against  a more com- 
plete data  set from several crystals, which has been 
reported elsewhere (Miller, Harr ison,  Appella ,  
Wlodawer  & Sussman,  1988). 

Both of  these structures were done relative to the 
uniform prior  distribution F ( O 0 0 ) / V c e , .  No advan-  
tage was taken of  a more detailed prior, and these 
solutions could be considered as simply 'max imum-  
entropy'  solutions as well. 

Towards a global algorithm 

The algori thm as presented here is not globally con- 
vergent. There are several test cases, including some 
small molecules which conventional  direct methods  
can solve, which the current algorithm has been 
unable to solve. The reasons for this are not com- 
pletely clear, but  it appears  that this algori thm, when 
it fails, has a tendency to converge to an equal mixture 
of  enant iomorphs .  

- - : ,  v 

' ~ :  o ' 

, 

Fig. 4. The same 20 A section as in Figs. 2 and 3, but ofthe 2Fo - Fc 
map, is presented for comparison purposes. While the density 
is more connected than in Fig. 3, the same basic features and 
molecular envelope remain. 

This failing is p robably  due to a deficiency in the 
minimizer. While the first derivative of  the cross 
entropy is calculated exactly in (5) and (Sa) ,  the 
second derivative is only approximated .  Also, a 
modified Newton ' s -me thod  algori thm is used, which 
is not the best available minimizer for a mult ivariate 
problem. 

In addit ion,  the use of  Sayre 's  equat ion to obtain 
a starting set was done in a naive manner  and a more 
sophist icated approach  to finding a starting set should 
be used. 

It should also be noted that  only a uniform prior 
has been used in the current  work and it is likely that 
a properly chosen prior  will enhance the convergence.  
I f  nothing else, a limited prior can be used to enforce 
the enan t iomorph  more strongly. 
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Abstract 

Infinite periodic minimal surfaces are now being 
introduced to describe some complex structures with 
large cells, formed by inorganic and organic 
materials, which can be considered as crystals of 
surfaces or films. Among them are the spectacular 
cubic crystalline structures built by amphiphilic 
molecules in the presence of water. The crystallo- 
graphic properties of these surfaces are studied from 
an intrinsic point of view, using operations of groups 
of symmetry defined by displacements on their sur- 
face. This approach takes advantage of the relation 
existing between these groups and those characteriz- 
ing the tilings of the hyperbolic plane. First, the 
general bases of the particular crystallography of the 
hyperbolic plane are presented. Then the translation 
subgroups of the hyperbolic plane are determined in 
one particular case, that of the tiling involved in the 
problem of cubic structures of liquid crystals. Finally, 
it is shown that the infinite periodic minimal surfaces 
used to describe these structures can be obtained from 
the hyperbolic plane when some translations are 
forced to identity. This is indeed formally analogous 
to the simple process of transformation of a Euclidean 
plane into a cylinder, when a translation of the plane 
is forced to identity by rolling the plane onto itself. 
Thus, this approach transforms the 3D problem of 
infinite periodic minimal surfaces into a 2D problem 
and, although the latter is to be treated in a non- 
Euclidean space, provides a relatively simple formal- 
ism for the investigation of infinite periodic surfaces 
in general and the study of the geometrical transfor- 
mations relating them. 

I. Introduction 

Recent studies of some 3D crystalline structures with 
large cells have pointed out the limitation of the 
classical aspect of crystallography, as concerned with 
the study of periodic organizations of topologically 
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zero-dimensional objects such as atoms and 
molecules, and called for the introduction of more 
operative concepts, permitting analysis of them as 
periodic organizations of two-dimensional objects 
such as surfaces and films. Such structures are often 
observed in liquid crystals - the 'bicontinuous' cubic 
phases of lyotropics, the D phases and 'blue' phases 
of thermotropic smectics and cholesterics - but also 
in some biological and inorganic materials. The need 
for new terms to describe them was advocated in 
some recent papers (Scriven, 1976, 1977; Hyde & 
Andersson, 1984; Mackay, 1985; Mackay & 
Klinowski, 1986; Sadoc & Charvolin, 1986). Among 
these structures we are particularly interested in liquid 
crystalline ones, formed by amphiphilic molecules in 
the presence of water, which can be described as 
periodic entanglements of two fluids media separated 
by interfaces organized in a symmetric film exhibiting 
a very rich polymorphism (Luzzati, 1968; Ekwall, 
1975). We have recently demonstrated that, in the 
case of the 'bicontinous' cubic structures of these 
materials, the film built by the interfaces is supported 
by surfaces directly related to the F, P and G infinite 
periodic minimal surfaces (or IPMS) of the 
mathematicians (Charvolin & Sadoc, 1987). These 
surfaces can be described as periodic non-intersecting 
surfaces with zero mean curvature separating space 
in two identical labyrinths. Thus, the above structures 
are interesting not only on purely physicochemical 
grounds but, also, as actual structures modelling sur- 
faces of great mathematical interest. 

Our approach to the polymorphism of the struc- 
tures formed by amphiphilic molecules is presented in 
Sadoc & Charvolin (1986), and its application to the 
case of 'bicontinuous' cubic structures is developed 
in Charvolin & Sadoc (1987). It is based upon the 
idea that a geometrical frustration, related to local 
interactions of the molecules and packing constraints, 
takes place within the film. This frustration is relaxed 
if the film is transferred into the 3D space with positive 
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